
CSE 1xx

Problem Solving and Programming

 Dr. A. Nayeemulla Khan

Course Objective

•Course Objective

• Introduce the essential skills for a logical thinking to
problem solving

• Introduce the essential skills in programming for
problem solving using computer

•Outcomes

• On completion of the course, students will have the

• -ability to identify an appropriate approach to solve the
problem

• -ability to write a pseudo code for the identified strategy

• -ability to translate the pseudocode into an executable

• program

• -ability to validate the program for all the possible inputs.

Skills of Software Engineer

• Technical Skills

• -Software Design

• - Coding

• -Testing

• Problem Solving Skills

• -logical and analytical thinking

• Soft Skills

• -Communication

• -Team Work

Problem

• Definition:A problem is a puzzle that requires logical thought or mathematics to
solve.
A puzzle could be a set of questions on a scenario which consists of description of
reality and set of constraints about the scenario.

Scenario: VIT campus has a library. The librarian issues books only to VIT
employees.
Careful observation suggests...
Description of reality : There is a library in VIT campus and
there is a librarian in the library.
Constraint : Librarian issues books only to VIT employees
Questions about the scenario:
1 How many books are there in the library?
2 How many books can be issued to an employee?
3. Does the librarian issue a book to himself?
etc

Case study - Discussion

Have you ever observed this scenario?

Yes!!! What are the problems in the scenario?

Types of Problems

• Problems do not always have straightforward solutions. Some

problems, such as balancing a checkbook or baking a cake, can

be solved with a series of actions. These solutions are called

algorithmic solutions.

• Once the alternatives have been eliminated, for example, and

once one has chosen the best among several methods of

balancing the checkbook, the solution can be reached by

completing the actions in steps. These steps are called the

algorithm.

• The solutions of other problems, such as how to buy

the best stock or whether to expand the company, are not so

straightforward. These solutions require reasoning built on

knowledge and experience, and a process of trial and error.

Solutions that cannot be reached through a direct set of steps

are called heuristic solution

Analytical Skill

• Thinking analytically is a skill like carpentry or

driving a car. It can be taught, it can be

learned, and it can improve with practice. But

like many other skills, such as riding a bike, it is

not learned by sitting in a classroom and being

told how to do it. Analysts learn by doing.

Problem Solving with Computers

 • Computers are built to deal with algorithmic solutions, which are
often difficult or very time consuming for humans.

• People are better than computers at developing heuristic solutions.

• Solving a complicated calculus problem or alphabetizing 10,000
names is an easy task for the computer, but the problem of how to
throw a ball or how to speak Tamil is not. The difficulty lies in the
programming.

• How can problems such as how to throw a ball or speak English be
solved in a set of steps that the computer can understand?

• The field of computers that deals with heuristic types of
problems is called artificial intelligence. Artificial
intelligence enables a computer to do things like build its
own knowledge bank and speak in a human language.

• As a result, the Đoŵputer s͛ proďleŵ-solving abilities are
similar to those of a human being. Artificial intelligence
is an expanding computer field, especially with the
increased use of Robotics.

• Until computers can be built to think like humans, people
will process most heuristic solutions and computers will
process many algorithmic solutions

Computational Problems

• Computation Definition: Computation is the

process of evolution from one state to

another in accordance with some rules.

Examples of Computational Problem

The Process of Computational

Problem Solving
• Computational problem solving does not simply

involve the act of computer programming. It is a
process, with programming being only one of the steps.

• Before a program is written, a design for the
program must be developed. And before a design can
be developed, the problem to be solved must
be well understood. Once written, the program must
be thoroughly tested

Problem Solving Life Cycle

For any problem solving strategy logic is prerequisite.

What Problem Can Be Solved By

Computer

• When the solution can be produced by a set of step-
by-step procedures or actions.

• This step-by-step action is called an algorithm.

• The algorithm will process some inputs and
produced output.

• Solving problem by computer undergo two phases:

– Phase 1:

• Organizing the problem or pre-programming phase.

– Phase 2:

• Programming phase.

PRE-PROGRAMMING PHASE

• This phase requires five steps:

– Analyzing the problem.

– Developing the Hierarchy Input Process Output

(HIPO) chart or Interactivity Chart (IC).

– Developing the Input-Process-Output (IPO) Chart.

– Drawing the Program flowcharts.

– Writing the algorithms.

PRE-PROGRAMMING PHASE

• Analyzing The Problem

– Understand and analyze the problem to
determine whether it can be solved by a
computer.

– Analyze the requirements of the problem.

– Identify the following:

• Data requirement.

• Processing requirement or procedures that will be
needed to solve the problem.

• The output.

PRE-PROGRAMMING PHASE

• All These requirements can be presented in a

Problem Analysis Chart (PAC)

Data Processing Output Solution

Alternatives

given in the
problem or
provided by
the user

List of
processing
required or
procedures.

Output
requirement.

List of ideas for

the solution of

the problem.

PRE-PROGRAMMING PHASE

• Example: Payroll Problem

– Calculate the salary of an employee who works by hourly
basis. The formula to be used is

 Salary = Hour works * Pay rate

Data Processing Output Solution Alternatives

Hours work,

Pay rate

Salary = Hours work * payrate Salary 1. Define the hours worked

and pay rate as constants. ∗2. Define the hours worked

and pay rate as input values.

Problem 1

Write a Problem Analysis Chart (PAC) to convert

the distance in miles to kilometers where 1.609

kilometers per mile.

Data Processin
g

Output
Solution Alternatives

Distance
in miles

Kilometer
s = 1.609
x miles

Distance
in
kilometers

1. Define the miles as

constants. ∗2. Define the miles as

input values.

Logic

• Definition : A method of human thought that involves
thinking in a linear, step by step manner about how a
problem can be solved

• Logic is a language for reasoning. It is a collection of
rules we use when doing reasoning.

• Example

• John's mum has four children.

• • The first Đhild is Đalled April.
• • The seĐoŶd MaǇ.
• • The third JuŶe.
• What is the name of the fourth child?

Importance of Logic in problem

solution

• Solution for any problem (summation of two

numbers) requires three things
Data : Input values (e.g. 2 and 3)
Process : Process of Summation
Output : Output after process (e.g. sum of
numbers (5))
The process part(e.g. Summation) of the solution
requires logic (e.g. How to sum)
Or in other words based on the logic the process
is developed

Importance of Logic in problem solving

Data Processing Output Solution Alternatives

Number, N Check if there is a
factor for N

Print Prime or Not
Prime

1. Divide N by

numbers from 2 to N

and if for all the

division operations,

the reminder is non

zero, the number is

prime otherwise it is

not prime

2. Same as 1 but

divide the N from 2 to

N/2

3. Same as Logic 1 but

divide N from 2 to

square root of N

Determine whether a given number is prime or not?

Importance of Logic in problem solving

Data Processing Output Solution Alternatives

Numbers M and N If N is less than M

Points = 0

Otherwise Compute
Points as N2 - M2

Number of points
gained

1. Compute N2 - M2
as NXN – MXM

2. Compute (N + M)
X (N – M)

(Number of
multiplication is
reduced)

In a fun game, MXM grid is given with full of coins. The player has to give a number 'N'
of his choice. If N is lesser than M then he is out of game and doesn't gain any points.
Otherwise he has to place all coins in the MXM grid in the NXN grid and he gains points
equal to the number of free cells in the N X N grid.

Problem 2

• Write a Problem Analysis Chart (PAC) to find an area

of a circle where area = pi * radius * radius

Data Processing Output

radius area = 3.14 x radius x radius area

Problem 3

• Write a Problem Analysis Chart (PAC) to compute and display the

temperature inside the earth in Celsius and Fahrenheit. The relevant

formulas are

 Celsius = 10 x (depth) + 20

 Fahrenheit = 1.8 x (Celsius) + 32

Data Processing Output

depth celsius = 10 x (depth) + 20

fahrenheit = 1.8 x (celsius) +
32

Display celsius,

Display
fahrenheit

Problem 4

• Write a problem analysis chart (PAC) that asks

a user to enter the distance of a trip in miles,

the ŵiles per galloŶ estiŵate for the user s͛
car, and the average cost of a gallon of gas.

Calculate and display the number of gallons of

gas needed and the estimated cost of the trip.

Data Processing Output

distance,

miles per gallon,

cost per gallon

gas needed = distance /
miles per gallon.

estimated cost = cost per
gallon x gas needed

Display gas needed

Display estimated cost

PRE-PROGRAMMING PHASE

• Developing the Hierarchy Input Process
Output (HIPO) or Interactivity Chart

– The problem is normally big and complex.

– Thus, requires big program.

– Thus, the processing can be divided into subtasks
called modules.

– Each module accomplishes one function.

– These modules are connected to each other to
show the interaction of processing between the
modules.

PRE-PROGRAMMING PHASE

• Main/control module controls the flow all

other modules.

• The IC is developed using top-down-method:

top to down left to right order (also refer to

order of processing).

• Modules are numbered, marked for

duplication, repetition or decision.

PRE-PROGRAMMING PHASE

• The interaction will form a hierarchy, called Hierarchy Input Process

Output Chart (HIPO) or Interactivity Chart (IC). Programming which use

this approach (problem is divided into subtasks) is called Structured

Programming.

Main Module

Module 3 Module 2 Module 1

Module 5 Module 4 Module 6

PRE-PROGRAMMING PHASE

PAYROLL

READ

PRINT CALCULATE

PRE-PROGRAMMING PHASE

• Example 2.2: Extended Payroll Problem

• You are required to write a program to calculate both the

gross pay and the net pay of every employee of your

company. To determine the gross pay, you have to multiply

the accumulated total hours worked by the employee, by the

appropriate pay rate. The program should print the cheque

that tells the total net pay. The net pay is calculated by

subtracting the gross pay with any deductions that may be

incurred by the employee.

PRE-PROGRAMMING PHASE

Accumulate

Hourly

Worked

1100

Payroll

0000

Calculate

Gross Pay

1000

Determine

Pay rate

1200

Write

Cheque

3000

Calculate

Net Pay

2000

Calculate

Deductions

2100

Problem 1
• Write a Hierarchy Input Process Output (HIPO) to compute and display the

temperature inside the earth in Celsius and Fahrenheit. The relevant

formulas are

 Celsius = 10 x (depth) + 20

 Fahrenheit = 1.8 x (Celsius) + 32

Temperature
0000

Calculate temperature
in celsius

1000

Get depth
1100

Calculate temperature
In fahrenheit

2000

Display
Temperature

3000

Problem 2

• Write a Hierarchy Input Process Output (HIPO)

that asks a user to enter the distance of a trip

in miles, the miles per gallon estimate for the

user s͛ Đar, aŶd the aǀerage Đost of a galloŶ of
gas. Calculate and display the number of

gallons of gas needed and the estimated cost

of the trip.

Estimation Cost
0000

Calculate gas
Needed

1000

Get total distance
in miles

1100

Get miles
per gallon

1200

Calculate estimated
Cost
2000

Get average cost
per gallon

2100

Display gas needed
Display estimated

Cost
3000

PRE-PROGRAMMING PHASE

• Developing the Input Process Output (IPO)

Chart

– Extends and organizes the information in the

Problem Analysis Chart.

– It shows in more detail what data items are input,

what are the processing or modules on that data,

and what will be the result or output.

– It combines information from PAC and HIPO Chart.

PRE-PROGRAMMING PHASE

Input Processing Module Output

-Hours Worked
-Pay Rate

-Deduction

-Enter Hourly Worked

-Enter Pay Rate

-Calculate Gross Pay

-Enter Deductions

-Calculate Net Pay

-Print Cheque

-End

1100

1200

1000

2100

2000

3000

0000

-Net pay

Problem 4

• Write an Input Process Output (IPO) that asks

a user to enter the distance of a trip in miles,

the ŵiles per galloŶ estiŵate for the user s͛
car, and the average cost of a gallon of gas.

Calculate and display the number of gallons of

gas needed and the estimated cost of the trip.

Input Processing Module Output

- Distance in
miles

- Miles per
gallon

- Cost gas per
gallon

- Enter distance

- Enter miles per gallon

- Calculate total gas
needed

- Enter cost gas per
gallon

- Calculate estimated cost

- Display total gas and
estimated cost

- End

1100

1200

1000

2100

2000

3000

0000

-Total gas
needed

- Estimated
cost

PRE-PROGRAMMING PHASE

• Drawing the Program Flowcharts

– Flowchart is the graphic representations of the individual
steps or actions to implement a particular module.

– The flowchart can be likened to the blueprint of a building.
An architect draws a blueprint before beginning construction
on a building, so the programmer draws a flowchart before
writing a program.

– Flowchart is independent of any programming language.

PRE-PROGRAMMING PHASE

– Flowchart is the logical design of a program.

– It is the basis from which the actual program code
is developed.

– Flowchart serves as documentation for computer program.

– The flowchart must be drawn according to definite rules
and utilizes standard symbols adopted internationally.

– The International Organization for Standardization (IOS)
was the symbols shown below (You can draw the symbols
using ready-made flowcharting template):

Flow Charts

•
• A floǁĐhart is a
diagrammatic
representation of an
algorithm.
• A floǁ Đhart is aŶ
organized
combination of shapes,
lines and
text that graphically
illustrate a
process or structure.

PRE-PROGRAMMING PHASE

Symbol Function

Show the direction of data flow or logical

solution.

Indicate the beginning and ending of a set of
actions or instructions (logical flow) of a module
or program.

Indicate a process, such as calculations,

opening and closing files.

PRE-PROGRAMMING PHASE

Indicate input to the program and output from the
program.

Use for making decision. Either True or False based
on certain condition.

Use for doing a repetition or looping of certain steps.

Connection of flowchart on the same page.

Connection of flowchart from page to page.

PRE-PROGRAMMING PHASE

• Example 2.3 : Sale Problem
– Draw a flowchart for a problem that to read two numbers.

The first number represents the unit price of a product and
the second number represents the quantity of the product
sold. Calculate and print the total sale.

– Solution: Stepwise Analysis of the Sale Problem
• Start of processing

• Read the unit price

• Read the quantity

• Calculate total sale

• Print total sale

• Stop the processing

PRE-PROGRAMMING PHASE

 START

READ

UNIT PRICE

READ

QUANTITY

A

A

TOTAL SALE =

UNITPRICE ´ QUANTITY

PRINT

TOTALSALE

STOP

Example: Flow Chart (Sequential)

 • Find the average of

three numbers

Structuring a Program
• Develop efficient computer solution to problems:

1. Use Modules

2. Use four logic structures

a. Sequential structure

• Executes instructions one after another in a sequence.

b. Decision structure

• Branches to execute one of two possible sets of instructions.

c. Loop structure

• Executes set of instruction many times.

d. Case structure

• Executes one set of instructions out of several sets.

3. Eliminate rewriting of identical process by using modules.

4. Use techniques to improve readability including four logic structure,
proper naming of variables, internal documentation and proper
indentation.

Sequential Logic Structure

The Decision Logic Structure

• Implements using the IF/THEN/ELSE instruction.

• Tells the computer that IF a condition is true, THEN

execute a set of instructions, or ELSE execute another

set of instructions

• ELSE part is optional, as there is not always a set of

instructions if the conditions are false.

• Algorithm:

IF <condition(s)> THEN

 <TRUE instruction(s)>

ELSE

 <FALSE instruction(s)

Decision Logic Structure

Examples of conditional expressions

• A < B (A and B are the same data type –

either numeric, character, or string)

• X + 5 >= Z (X and Z are numeric data)

• E < 5 or F > 10 (E and F are numeric data)

• DATAOK (DATAOK – logical datum)

Example

• Assume your are calculating pay at an hourly

rate, and overtime pay(over 40 hours) at 1.5

times the hourly rate.

– IF the hours are greater than 40, THEN the pay is

calculated for overtime, or ELSE the pay is

calculated in the usual way.

Example Decision Structure

NESTED IF/THEN/ELSE INSTRUCTIONS

• Multiple decisions.

• Instructions are sets of instruction in which

each level of a decision is embedded in a level

before it.

NESTED IF/THEN/ELSE INSTRUCTIONS

The Loop Logic Structure

• Repeat structure

• To solve the problem that doing the same task

over and over for different sets of data

• Types of loop:

– WHILE loop

– Do..WHILE loop

– Automatic-Counter Loop

Loop Logic Structure

WHILE loop

WHILE loop
• Do the loop body if the condition is true.

• Eǆaŵple: Get the suŵ of ϭ, Ϯ, ϯ, …, ϭϬϬ.
– Algorithm:

• Set the number = 1

• Set the total = 0

• While (number <= 100)

– total = total + number

– number = number + 1

• End While

• Display total

WHILE loop

Start

Set number = 1

number <= 100

Set total = 0

total =

total + number

number =

number + 1

Display total

End

No

Yes

Automatic Counter Loop

• Use variable as a counter that starts counting at

a specified number and increments the variable

each time the loop is processed.

• The beginning value, the ending value and the

increment value may be constant. They should

not be changed during the processing of the

instruction in the loop.

Automatic-Counter Loop

Automatic-Counter Loop

NESTED LOOP

NESTED LOOP

Flow Chart - Selectional

Example (Iterational)

•
• Do the folloǁiŶg for N iŶput ǀalues. ‘ead N
from user
− Write a prograŵ to fiŶd the aǀerage of a
student given the marks he
obtained in three subjects.
− TheŶ test ǁhether he passed or failed.
− For a studeŶt to pass, aǀerage should Ŷot ďe
less than 65.

Flow Chart – Example (Iterational)

Tool demo

• Demo of Flow Chart Drawing tool

• - Visio

• -Raptor

• -Alice

•-Convert algorithm to pseudo code

•* Quiz

Problem 1

Draw a flow chart for To convert

the distance in miles to kilometers where 1.609

kilometers per mile.

start

read miles

km = 1.609 x miles

print km

end

Problem 2

• Draw a flow chart for find an area of a circle where

area = pi * radius * radius

start

read radius

area = 3.14 x radius x radius

print area

end

Problem 3

• Draw a flow chart for user to enter the

distance of a trip in miles, the miles per gallon

estiŵate for the user s͛ Đar, aŶd the aǀerage
cost of a gallon of gas. Calculate and display

the number of gallons of gas needed and the

estimated cost of the trip.

start

read distance

total_gas =

distance / mile_gallon

read miles_gallon

A
end

Read cost_gallon

total_cost =

total_gas x cost_gallon

A

Print total_gas,

total_cost

Algorithm

• Representation of computation is known as

algorithm

• 'In Computer Science following notations are

used to represent algorithm

• ■ Flowchart: This is a graphical representation

of computation

• ■ Pseudo code: They usually look like English

statements but have additional qualities

Algorithm
• • A step by step procedure to solve a problem

• Properties
– a finite sequence of steps
– Each step shall be explicit and unambiguous
• Algorithŵs are Ŷot speĐifiĐ to aŶǇ prograŵŵiŶg
language
• AŶ algorithŵ ĐaŶ ďe iŵpleŵeŶted iŶ aŶǇ
programming language
• Use of Algorithŵs
– Facilitates easy development of programs
– Iterative refinement
– Easy to convert it to a program
– Review is easier

Algorithm (2 of 2)

•

• IdeŶtifǇ the IŶputs aŶd Outputs

• IdeŶtifǇ aŶǇ other data aŶd ĐoŶstaŶts
required to solve the problem

• IdeŶtifǇ ǁhat Ŷeeds to ďe Đoŵputed

• Write aŶ algorithŵ

Algorithm

• Definition:
• FiŶite set of steps to aĐĐoŵplish a task
• “tep-by-step, simple, mechanical procedure to
compute a function on every possible input
Example :
Algorithm for adding two numbers
Begin
Step 1: Accept two numbers in A and B
Step 2: C = A + B
Step 3: Display C
END

Properties of an Algorithm

Steps to Develop an Algorithm

Different patterns in Algorithm

Example 1 (Sequential)

• Task: Find the Area of a Circle
Algorithm:
BEGIN
Stepl : Accept the RADIUS
Step 2 : Find the square of RADIUS and store it in
SQUARE
Step 3 : Multiply SQUARE with 3.14 and store the
result in AREA

END

Example 2(Sequential)

• Find the average marks scored by a student in 3 subjects:
Input
BEGIN

Step 1 : Accept Marks1, Marks2, Marks3
Step 2 : Sum = Marks1 + Marks2 + Marks3
Step 3 : Average = Sum / 3
Step 4 : Display Average

END

Example 1 - Selectional

 • Write an algorithm to find the average marks of a student.
Also check whether the student has passed or failed.
For a student to be declared pass, average marks should
not be less than 65.
BEGIN
Step 1 : Accept Marks'!, Marks2, Marks3
Step 2 : Total = Marks'! + Marks2 + Marks3
Step 3 : Average = Total / 3
“tep ϰ : “et Output = ͞“tudeŶt Passed͟
“tep ϱ : if Aǀerage < ϲϱ theŶ “et Output = ͞“tudeŶt Failed"
Step 6 : Display Output
END

Example 2 - Selectional

 • Task:Find whether a given year is a leap year or not
Algorithm:
BEGIN
Stepl : Acceptthe YEAR
Step 2 : IF ({YEAR%4=0 AND YEAR%100!=0)OR (YEAR%400=0))
Display "Year is a leap year"
ELSE
DisplaǇ ͞Year is Ŷot a leap Ǉear"
ENDIF
END
For the logic in the IF condition refer Truth Table for Leap year
problem

Example - Iterational

•
FiŶd the aǀerage ŵarks sĐored ďǇ ͚N͛ Ŷuŵďer of studeŶts
BEGIN
Step 1 : Accept Number Of Students
Step 2 : Counter = 1
Step 3 : Read Marks1, Marks2, Marks3
Step 4 : Total = Marks1 + Marks2 + Marks3
Step 5 : Average = Total / 3
“tep ϲ : “et Output = ͞“tudeŶt Passed͟
“tep ϳ : If ;Aǀerage < ϲϱͿ theŶ “et Output = ͞“tudeŶt Failed"
Step 8 : Display Output
Step 9 : Counter = Counter + 1
Step 10 : If (Counter <= NumberOfStudents) then goto step 3
END

Programming Or Implementation Phase

• Transcribing the logical flow of solution steps in

flowchart or algorithm to program code and run the

program code on a computer using a programming

language.

• Programming phase takes 5 stages:

• Coding.

• Compiling.

• Debugging.

• Run or Testing.

• Documentation and maintenance.

Programming Or Implementation Phase

• Once the program is coded using one of the

programming language, it will be compiled to ensure

there is no syntax error. Syntax free program will

then be executed to produce output and

subsequently maintained and documented for later

reference.

DOCUMENTATION OR

MAINTENANCE

EXECUTE OR

RUN

MAKE

CORRECTION

COMPILE THE

PROGRAM

CODING

NO SYNTAX

ERROR

Programming Or Implementation Phase

• Coding
– Translation or conversion of each operation in the

flowchart or algorithm (pseudocode) into a computer-
understandable language.

– Coding should follow the format of the chosen
programming language.

– Many types or levels of computer programming language
such as:

– Machine language

– Symbolic language or assembly language

– Procedure-oriented language

– The first two languages are also called low-level
programming language. While the last one is called high-
level programming language.

Programming Or Implementation Phase

• Machine Language

– Machine language uses number to represent letters,
alphabets or special character that are used to represent
bit pattern.

– Example:

• an instruction to add regular pay to overtime pay, yielding total
pay might be written in machine language as follows:

 16 128 64 8
• in which 16 is a code that mean ADD to the computer. The 128 and

64 are addresses or location at which regular pay and overtime
pay are stored. The 8 represents the storage location for the total
pay.

Programming Or Implementation Phase

• Sometimes, bit pattern that represent letters

and alphabets are used for coding.

– Example:

 Instead of: 16 128 64 8

 Use: 10000 10000000 1000000 1000

– This representation is ideal for a computer but

difficult and tedious to the programmer to write a

lengthy program.

Programming Or Implementation Phase

• Symbolic Language or Assembly Language

– A symbolic language or assembly language is closely related to
machine language in that, one symbolic instruction will translate into
one machine-language instruction.

– Contain fewer symbols, and these symbols may be letters and special
characters, as well as numbers.

– As example, a machine language instruction

 16 128 64 8

 can be rewritten in assembly language as

 ADD LOC1 LOC2 LOC3

– Which means, add content of location LOC1 to location LOC2 and put
the result in location LOC3.

Programming Or Implementation Phase

• Procedure – Oriented Language

– Programmer has to know the computer hardware before

he can write program in machine and assembly language.

It means the language is machine dependent.

– Using procedure – oriented language, the programmer can

run the program in any computer hardware.

– A special program called a compiler will translate program

written using procedure – oriented language to machine

language.

Programming Or Implementation Phase

• Some example of the language:

– COBOL (COmmon Business Oriented Language)

– FORTRAN (FORmula TRANslation)

– Pascal

– C

– C++

– BASIC, etc.

• These languages are also called high-level

programming language

Programming Or Implementation Phase

Computer
Language

Instruction Format

Machine language

Assembly language

BASIC

FORTRAN

COBOL

Pascal

C

16 128 64 8

ADD LOC1 LOC2 LOC3

LET T = R + 0

TOTAL = RPAY + OPAY

ADD RPAY, OPAY GIVING TOTAL

TOTAL : = RPAY + OPAY

TOTAL = RPAY + OPAY

Programming Or Implementation Phase

• Compiling and Debugging
– Compiling is a process of a compiler translates a program

written in a particular high–level programming language
into a form that the computer can execute.

– The compiler will check the program code know also as
source code so that any part of the source code that does
not follow the format or any other language requirements
will be flagged as syntax error.

– This syntax error in also called bug, when error is found the
programmer will debug or correct the error and then
recompile the source code again.

– The debugging process is continued until there is no more
error in the program.

Programming Or Implementation Phase

• Testing

– The program code that contains no more error is called

executable program. It is ready to be tested.

– When it is tested, the data is given and the result is

verified so that it should produced output as intended.

– Though the program is error free, sometimes it does not

produced the right result. In this case the program faces

logic error.

– Incorrect sequence of instruction is an example that

causes logic error.

Programming Or Implementation Phase

• Documentation and Maintenance

– When the program is thoroughly tested for a substantial period of
time and it is consistently producing the right output, it can be
documented.

– Documentation is important for future reference. Other programmer
may take over the operation of the program and the best way to
understand a program is by studying the documentation.

– Trying to understand the logic of the program by looking at the source
code is not a good approach.

– Studying the documentation is necessary when the program is
subjected to enhancement or modification.

– Documentation is also necessary for management use as well as audit
purposes.

Next 8 slides are for faculty to imbibe, hints
on how to solve teach problem solving

Approach to Teaching Problem
Solving – Faculty Hints

Model a useful problem-solving method -
Show students by your example how to be patient and persistent

and how to follow a structured method

Teach within a specific context
Teach problem-solving skills in the context in which they will be

used (e.g., mole fraction calculations in a chemistry course). Use
real-life problems in explanations, examples, and exams. Do not
teach problem solving as an independent, abstract skill.

Help students understand the problem.
In order to solve problems, students need to define the end goal.

This step is crucial to successful learning of problem-solving skills.
If you succeed at helping students answer the questions “what?”
and “why?”, finding the answer to “how?” will be easier.

Approach to Teaching Problem
Solving – Faculty Hints

Take enough time.
When planning a lecture/tutorial, budget enough time for:

understanding the problem and defining the goal, both
individually and as a class; dealing with questions from you
and your students; making, finding, and fixing mistakes; and
solving entire problems in a single session

Ask questions and make suggestions
Ask students to predict “what would happen if ...” or explain

why something happened. This will help them to develop
analytical and deductive thinking skills. Also, ask questions
and make suggestions about strategies to encourage students
to reflect on the problem-solving strategies that they use

Link errors to misconceptions

Use errors as evidence of misconceptions, not

Woods’ problem-solving model

Woods’ problem-solving model

“Let it simmer”.
 Use this stage to ponder the problem.

Ideally, students will develop a mental image
of the problem at hand during this stage.
Identify specific pieces of knowledge.

Students need to determine by themselves
the required background knowledge from
illustrations, examples and problems covered
in the course.
Collect information. Encourage students to

collect pertinent information such as

Woods’ problem-solving model ..

Plan a solution

Consider possible strategies. Often, the type
of solution will be determined by the type of
problem. Some common problem-solving
strategies are: compute; simplify; use an
equation; make a model, diagram, table, or
chart; or work backwards.
Choose the best strategy. Help students to

choose the best strategy by reminding them
again what they are required to find or
calculate

Woods’ problem-solving model..

Carry out the plan

Be patient. Most problems are not solved
quickly or on the first attempt. In other cases,
executing the solution may be the easiest
step.
Be persistent. If a plan does not work

immediately, do not let students get
discouraged. Encourage them to try a
different strategy and keep trying.

Woods’ problem-solving model ..

 Look back

Encourage students to reflect. Once a
solution has been reached, students should
ask themselves the following questions:

Does the answer make sense?

Does it fit with the criteria established in step 1?

Did I answer the question(s)?

What did I learn by doing this?

Could I have done the problem another way?

Stuff to look at

Problem Solving Basics and Computer
Programming, by By Ronald A. Pasko

http://www.cs.iit.edu/~cs100/ProblemSolving.
pdf

Problem 1

Given the 3 dimensions of a box (length,
width, and height), multiply them together to
determine the volume

Steps to Program Solving and
Program Development

Decomposition

Flowchart
Pseudocode

Code

1. Decomposition

Decompose the problem description

Eg. perform syntactic analysis on the
description – in 4 steps

Identify all of the nouns in the sentence
Given the 3 dimensions of a box (length, width,

and height), calculate the volume.

2.Segregate Input - Output

Once these nouns are identified, they should
be grouped into one of two categories:
Input (items I either already know or am

getting from the user)
Output (items that I find out by manipulating

the input)

3. Eliminate redundant
information

 There may be some information in the problem
description that made it into our input/output chart
that we really don’t need to solve the problem (that
is, not all of thenouns may be relevant)

Eliminate the most general item

4. Process

Identify all of the verbs in the sentence

The verbs in the problem specification
identify what actions your program will need
to take

These actions, known as processing are the
steps between your input and your output

5. Processing for Output

Link you inputs, processes, and output
This step is as simple as drawing lines between the

relevant information in your chart. Your lines show what
inputs need to be processed to get the desired output
Take our length, width, and height and multiply them, to

give us our desired volume

5. Processing

Calculate could refer to applying some
mathematical formula or other transformation
to our input data in order to reach the desired
output
Here calculate stand for
Volume = length * width * height

6. Flowcharting

Next step is to perform flowcharting

Flowcharting is a graphical way of depicting
a problem in terms of its inputs, outputs, and
processes

Here take in three items as input (length,
width, and height). And after we have the
user’s input, need to process it. In this case,
we must multiply the dimensions together

6. Flowchart for Volume

7. Pseudocode

Move from flowchart to pseudocode

Pseudocode involves writing down all of the
major steps you will use in the program as
depicted in your flowchart

7. Pseudocode

4 Step Process

Decomposition,
Flowcharting, and

Pseudocode

Code in any programming language

Try out -Problem 2

You have a store that sells lemons and
oranges. Oranges are $.30 each and lemons
are $.15 each. Your program should get from
the user the numbers of oranges and lemons
he/she wants and outputs the total amount of
money they owe you.

Problem 3

Write a program that will accept as input
from the user, an answer to the following
question: Is it raining? If it is raining, tell the
user to get an umbrella

Problem 3

Problem 4

Problem 4

Next - Program

Try, A First Program—Calculating the Drake
Equation in the book “Introduction to
Computer Science Using Python” by
Charles Dierbach at the link below at Page
29 which has test cases use also.
https://www.ebooks-it.net/ebook/introduction-

to-computer-science-using-python

